NEW | ||||||
Firma CCCC zamierza ustalić frakcję klientów będących potencjalnymi nabywcami jej produktów. Szacuje się, że odsetek klientów chcących nabyć produkty tej firmy wynosi 75%. Ilu - co najmniej - klientów powinno znaleźć się w próbie losowej przy maksymalnym błędzie szacunku 10% i współczynniku ufności 0,95? 1. JAK ROZPOZNAĆ ZADANIE DOTYCZĄCE MINIMALNEJ LICZEBNOŚCI PRÓBY?Po przeczytaniu całego zadania zwracamy uwagę na zdanie: “ Ilu - co najmniej - klientów powinno znaleźć się w próbie losowej przy maksymalnym błędzie szacunku 10% i współczynniku ufności 0,95? ” Występują tu zwroty: ilu - co najmniej - klientów powinno znaleźć się w próbie losowej ... , przy maksymalnym błędzie szacunku ... . Pojawia się również wyrażenie współczynnik ufności . Biorąc pod uwagę wszystkie słowa-klucze mamy na pewno do czynienia z zadaniem dotyczącym minimalnej liczebności próby. 2. ANALIZA I PRAWIDŁOWE WYPISANIE DANYCH.Czytamy zdanie po zdaniu. Firma CCCC zamierza ustalić frakcję klientów będących potencjalnymi nabywcami jej produktów. W tym zdaniu nie ma żadnych danych liczbowych, więc je pomijamy. Szacuje się, że odsetek klientów chcących nabyć produkty tej firmy wynosi 75%. 75% klientów chce nabyć produkty firmy. Jest to odsetek (podany w procentach), a więc przypuszczalny wskaźnik struktury w populacji. Opisujemy go symbolem . “ Ilu - co najmniej - klientów powinno znaleźć się w próbie losowej przy maksymalnym błędzie szacunku 10% i współczynniku ufności 0,95? ” Szukamy liczebności próby, którą oznaczamy literą . Maksymalny błąd szacunku wynosi . Współczynnik ufności wynosi . Od razu wyznaczamy . Podsumowując tworzymy przejrzystą tabelę z danymi:
- współczynnik ufności, 3. WYBÓR ODPOWIEDNIEGO WZORU.Spójrzmy w kartę wzorów. Dla minimalnej liczebności próby mamy do wyboru pięć modeli. Teraz wracamy do danych i na początku sprawdzamy, czy jest znana. Stwierdzamy, że nie jest znana , zatem wykluczamy model I. Nie mamy próby pilotażowej o konkretnej liczebności , gdzie możliwe jest wyliczenie wariancji , wobec tego odrzucamy również modele II i III. W zamian dysponujemy spodziewanym wskaźnikiem struktury , zatem wybieramy model IV .
4. UZUPEŁNIANIE WYBRANEGO WZORU I OBLICZENIA.Wracamy do danych z tabeli i uzupełniamy wzór konkretnymi liczbami. Zgodnie ze wzorem .
Teraz należy odczytać odpowiednią statystykę z tablic. W formule znajduje się literka u , zatem skorzystamy z tablic rozkładu normalnego: http://matma-po-ludzku.pl/materialy/statystyka/wzory/rnormalny.pdf . Zapis oznacza konieczność odnalezienia statystyki dla . Czytanie z tablic rozkładu normalnego nie jest trudne. Sumuje się wartości znajdujące się na obrzeżach tzn. z kolumny, która stanowi części dziesiętne i z wiersza, który traktujemy jako części setne. W przypadku sumujemy i czyli .
Wracamy do obliczeń i podstawiamy (zaokrąglanie to indywidualna sprawa wynikająca najczęściej z preferencji prowadzącego):
5. WYNIK I INTERPRETACJA.Ostatecznie otrzymujemy: , czyli ZAWSZE zaokrąglając w górę otrzymujemy . Interpretacja brzmi następująco: Aby oszacować frakcję klientów będących potencjalnymi nabywcami produktów firmy CCCC z ufnością 0,95 należy wylosować do próby 73 osoby. |
||||||