NEW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dyrekcja dużego domu towarowego zamierza ustalić, ile czasu spędzają w nim klienci w soboty. W tym celu wylosowano próbę pilotażową, która dała następujące wyniki:
Przyjmując współczynnik ufności 0,96 oraz maksymalny błąd szacunku nieprzekraczający 0,5 minuty, oszacuj, czy wylosowana próba wstępna jest wystarczająca do oszacowania średniego czasu w populacji generalnej klientów. 1. JAK ROZPOZNAĆ ZADANIE DOTYCZĄCE MINIMALNEJ LICZEBNOŚCI PRÓBY?Po przeczytaniu całego zadania zwracamy uwagę na zdanie: “ Przyjmując współczynnik ufności 0,96 oraz maksymalny błąd szacunku nieprzekraczający 0,5 minuty, oszacuj, czy wylosowana próba wstępna jest wystarczająca do oszacowania średniego czasu w populacji generalnej klientów. ” Występują tu zwroty: maksymalny błąd szacunku ... , czy wylosowana próba wstępna jest wystarczająca ... . Odnajdujemy również wyrażenie: współczynnik ufności . Biorąc pod uwagę wszystkie słowa-klucze mamy na pewno do czynienia z zadaniem dotyczącym minimalnej liczebności próby. 2. ANALIZA I PRAWIDŁOWE WYPISANIE DANYCH.Czytamy zdanie po zdaniu. Dyrekcja dużego domu towarowego zamierza ustalić, ile czasu spędzają w nim klienci w soboty. W tym celu wylosowano próbę pilotażową, która dała następujące wyniki:
Z podanej tabeli wynika, że wylosowano klientów do próby pilotażowej. Wydaje się dziwne, że w zadaniu, którego istotą jest znalezienie liczebności próby podaje się właśnie to, czego szukamy - a więc liczebność próby. Nie ma powodu do niepokoju - jest to liczebność próby wstępnej (jak podano w zadaniu), którą oznaczamy . Podano również informacje o konkretnych wynikach z próby. Jeżeli dysponujemy wartościami tabelarycznymi, to zawsze możemy policzyć średnią , wariancję i odchylenie standardowe (lub , ). Nie liczmy jednak tych parametrów od razu, ponieważ dopiero etap wyboru formuły wskaże nam czego potrzebujemy. Po prostu chodzi o to, żeby nie liczyć na zapas np. odchylenia, bo może okazać się niepotrzebne w późniejszych obliczeniach. “ Przyjmując współczynnik ufności 0,96 oraz maksymalny błąd szacunku nieprzekraczający 0,5 minuty, oszacuj, czy wylosowana próba wstępna jest wystarczająca do oszacowania średniego czasu w populacji generalnej klientów. ” Podano współczynnik ufności, a więc . Od razu wyznaczamy . Maksymalny błąd szacunku wynosi minuty. Szukamy liczebności próby właściwej, którą oznaczamy literą . Podsumowując tworzymy przejrzystą tabelę z danymi:
- współczynnik ufności, 3. WYBÓR ODPOWIEDNIEGO WZORU.Spójrzmy w kartę wzorów. Dla minimalnej liczebności próby mamy do wyboru pięć modeli. Teraz wracamy do danych i na początku sprawdzamy, czy jest znana. Stwierdzamy, że nie jest znana , zatem wykluczamy model I. Ponadto wiemy, że mamy do czynienia z próbą pilotażową, której liczebność jest większa niż 30 ( ) i istnieje możliwość wyliczenia z próby wstępnej na podstawie tabeli z danymi- wobec tego wybieramy model III .
4. UZUPEŁNIANIE WYBRANEGO WZORU I OBLICZENIA.Wracamy do danych z tabeli i uzupełniamy wzór konkretnymi liczbami. Jak widać brakuje tylko , więc dopóki nie znajdziemy wartości tego parametru nie możemy obliczyć liczebności próby właściwej. Wyliczanie wariancji z próby jest zagadnieniem ze statystki opisowej. Dysponujemy danymi tabelarycznymi, gdzie warianty cechy (czas w minutach) są w formie przedziałów tzn. od jednej wartości do drugiej wartości. Taki szereg określa się szeregiem rozdzielczym przedziałowym. Przeredagujmy zatem tabelę z zadania właśnie na tą postać szeregu.
W przypadku szeregu rozdzielczego przedziałowego nie ma możliwości pomyłki do tego, co jest wariantem cechy, a co liczebnością , ponieważ nie zdarza się, aby było zapisane w formie przedziałów. Symbol to po prostu ogólny zapis przedziału lewostronnie domkniętego i prawostronnie otwartego (chyba najczęściej używany – chociaż zależy od preferencji prowadzącego). Należy pilnować, aby końcówka każdego przedziału była początkiem następnego. W tabeli z zadania mamy właśnie przedstawioną sytuację , (kończymy przedział na 6, następny również zaczynamy od 6), itd. w związku z tym nie musimy nic zmieniać, zachowana jest ciągłość. Wzór na wariancję z danych szeregu przedziałowego wygląda następująco: . Jest też alternatywa , ale będziemy używać pierwszej wersji. Okazuje się, że do policzenia wariancji i tak niezbędna jest średnia. W szeregu przedziałowym średnią liczymy ze wzoru . Na początku wyjaśnijmy symbol . Oznacza on środek każdego z podanych przedziałów, a obliczany jest na podstawie formuły . Upraszczając, należy zsumować początek i koniec każdego przedziału i wynik podzielić na dwa. Wracamy do wzoru na średnią. Znak oznacza sumę. Pod tym symbolem znajduje się zapis , a nad nim , to środki kolejnych przedziałów , a liczebności dla kolejnych przedziałów. Wszystko razem oznacza, że będziemy sumować kolejne iloczyny , gdzie będzie rosło od aż do wartości , czyli , a więc ogólnie:
W naszym przypadku znad znaku sumy oznacza liczbę przedziałów klasowych (ilość wierszy w tabeli z danymi). Tak więc średnia będzie miała uproszczony wzór: = Czym jest , oraz ? Wszystko to zostanie pokazane dokładnie w tabeli. Obliczmy w niej również środki poszczególnych przedziałów.
Uzupełniając wzór średniej dla otrzymujemy: = i oczywiście możemy uzupełnić go danymi z tabeli, ale proponuję nadal korzystać z tabeli i wykonywać w niej obliczenia. Po pierwsze jest bardziej klarowna, po drugie ułamek powstały po rozpisaniu wzoru może okazać się dłuższy niż w tym konkretnym zadaniu i łatwo tu o pomyłkę. W tabelce powoli budujemy wzór na średnią z szeregu przedziałowego, a jej nagłówki zawsze wyglądają tak samo. Każdą wartość mnożymy przez odpowiadającą jej wartość , a następnie sumujemy powstałe iloczyny. Przecięcie wiersza z symbolem i kolumny daje kompletny licznik wzoru na średnią.
Dysponujemy wartością średniej, zatem możemy wrócić do obliczania wariancji. Rozpiszemy wzór analogicznie jak w przypadku średniej. Najpierw ogólnie:
i dla :
Tu też można podstawiać dane z tabeli, ale ponownie proponuję trzymać się obliczeń tabelarycznych. Można kontynuować poprzednią tabelę dopisując kolejne kolumny. Znowu krok po kroku będziemy tworzyć licznik ze wzoru. Dopisana pierwsza kolumna - od każdego środka przedziału odejmujemy wcześniej wyliczoną średnią , druga kolumna to podniesienie wyników z poprzedniej do kwadratu. Ostatnia to wymnożenie wyników z drugiej przez odpowiadające im wartości i dopiero ona jest sumowana (przecięcie wiersza z symbolem i daje kompletny licznik wzoru na wariancję).
Skoro udało nam się obliczyć wartość , to możemy wreszcie wrócić do głównej istoty naszego zadania i uzupełniamy wzór :
Teraz należy odczytać odpowiednią statystykę z tablic. W formule znajduje się literka u , zatem skorzystamy z tablic rozkładu normalnego: http://matma-po-ludzku.pl/materialy/statystyka/wzory/rnormalny.pdf . Zapis oznacza konieczność odnalezienia statystyki dla . Czytanie z tablic rozkładu normalnego nie jest trudne. Sumuje się wartości znajdujące się na obrzeżach tzn. z kolumny, która stanowi części dziesiętne i z wiersza, który traktujemy jako części setne. W przypadku sumujemy i czyli .
Wracamy do obliczeń i podstawiamy (zaokrąglanie to indywidualna sprawa wynikająca najczęściej z preferencji prowadzącego):
5. WYNIK I INTERPRETACJA.Ostatecznie otrzymujemy: , czyli ZAWSZE zaokrąglając w górę otrzymujemy . Interpretacja brzmi następująco: Aby oszacować średni czas w populacji generalnej klientów z ufnością 0,96 do próby należy wylosować 453 osób (należy dolosować osób czyli próba nie jest wystarczająca). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||