NEW | ||||||
ISBN 83-227-1608-7 str. 205 W pewnym zakładzie zatrudniającym 5000 pracowników, 40% z nich jest zadłużonych w Spółdzielczej Kasie Oszczędnościowo-Kredytowej (SKOK). Spośród pracowników zadłużonych pobrano w sposób losowy niezależną próbę 7,5% osób, dla których odchylenie standardowe spłacanych rat miesięcznych wyniosło 80 zł. Zakładając, że rozkład wysokości spłacanych rat jest normalny, oszacować - z prawdopodobieństwem 0,95 - przedział ufności Neymana pokrywający odchylenie standardowe u wszystkich zadłużonych pracowników. 1. JAK ROZPOZNAĆ ZADANIE DOTYCZĄCE ESTYMACJI PRZEDZIAŁOWEJ ?Po przeczytaniu całego zadania zwracamy uwagę na zdanie: Zakładając, że rozkład wysokości spłacanych rat jest normalny, oszacować - z prawdopodobieństwem 0,95 - przedział ufności Neymana pokrywający odchylenie standardowe u wszystkich zadłużonych pracowników. Występują tu zwroty: oszacować przedział ufności Neymana i prawdopodobieństwo czyli współczynnik ufności - w związku z tym na pewno jest to zadanie dotyczące estymacji przedziałowej. 2. ANALIZA I PRAWIDŁOWE WYPISANIE DANYCH.Analizujemy zdanie po zdaniu. W pewnym zakładzie zatrudniającym 5000 pracowników, 40% z nich jest zadłużonych w Spółdzielczej Kasie Oszczędnościowo-Kredytowej (SKOK). Na początku dowiadujemy się, że populacja liczy pracowników. 40% z nich jest zadłużonych w SKOKach, a więc ilościowo . Jeszcze nic nie wspomniano na temat próby. Spośród pracowników zadłużonych pobrano w sposób losowy niezależną próbę 7,5% osób, dla których odchylenie standardowe spłacanych rat miesięcznych wyniosło 80 zł. Dopiero teraz zaczyna się opis próby, ponieważ pojawia się informacja na temat wylosowania konkretnej ilości osób spośród zadłużonych pracowników. Stanowią oni 7,5% osób dłużników SKOKów. Obliczamy więc liczebność próby . Jeszcze raz dla rozjaśnienia sytuacja przedstawia się następująco:
Dodatkowo podano jeden z podstawowych parametrów dla próby tzn. odchylenie standardowe (oczywiście używamy oznaczenia dla próby). Zakładając, że rozkład wysokości spłacanych rat jest normalny, oszacować - z prawdopodobieństwem 0,95 - przedział ufności Neymana pokrywający odchylenie standardowe u wszystkich zadłużonych pracowników. W tym zdaniu występuje założenie normalności rozkładu wysokości spłacanych rat i to już odnosi się do populacji (wcześniej wspominałam w części teoretycznej, że próba jest z reguły za mała aby stwierdzić rozkład normalny). Nie mamy informacji na temat tego rozkładu, zatem możemy tylko zapisać - rozkład normalny o nieznanej średniej i nieznanym odchyleniu standardowym . Podano również współczynnik ufności . Od razu wyznaczamy . Podsumowując tworzymy przejrzystą tabelę z danymi:
- współczynnik ufności, 3. WYBÓR ODPOWIEDNIEGO WZORU.Szukamy parametru, który należy oszacować przedziałem ufności i w ostatnim zdaniu wyłapujemy słowo: Zakładając, że rozkład wysokości spłacanych rat jest normalny, oszacować - z prawdopodobieństwem 0,95 - przedział ufności Neymana pokrywający odchylenie standardowe u wszystkich zadłużonych pracowników. Wyrażenie odchylenie standardowe oznacza, że będziemy budować przedział ufności oczywiście dla odchylenia standardowego z populacji. Spójrzmy w kartę wzorów. Dla odchylenia standardowego mamy do wyboru dwa modele. Teraz wracamy do danych i sprawdzamy, czy jest znana i jaka jest liczebność próby. nie jest znana , a liczebność próby jest większa od 30 , zatem wybieramy model II .
4. UZUPEŁNIANIE WYBRANEGO WZORU I OBLICZENIA.Wracamy do danych z tabeli i uzupełniamy wzór konkretnymi danymi.
Teraz należy odczytać odpowiednią statystykę z tablic. W formule znajduje się literka u , zatem skorzystamy z tablic rozkładu normalnego (link). Zapis oznacza konieczność odnalezienia statystyki dla . Czytanie z tablic rozkładu normalnego nie jest trudne. Sumuje się wartości znajdujące się na obrzeżach tzn. z kolumny, która stanowi części dziesiętne i z wiersza, który traktujemy jako części setne. W przypadku sumujemy i czyli .
Wracamy do obliczeń i podstawiamy (zaokrąglanie to indywidualna sprawa wynikająca najczęściej z preferencji prowadzącego):
5. WYNIK I INTERPRETACJA.Ostatecznie otrzymujemy: Interpretacja brzmi następująco: Z ufnością 0,95 nieznane odchylenie standardowe wszystkich zadłużonych pracowników mieści się w przedziale od 71,88 do 90,19 zł. Statystyka: podstawy teoretyczne, przykłady, zadania / Mieczysław Sobczyk. - Wyd.1 - Lublin : Wydaw.Uniw.M.Curie-Skłodowskiej, 2000 - 425 s. ; 25 cm. - ISBN 83-227-1608-7, str. 205 |
||||||