NEW | ||||||
Na podstawie próby losowej obejmującej 26 paragonów kasowych pewnego stoiska kosmetycznego otrzymano średnią kwotę zakupu wynoszącą 48,80 zł i odchylenie standardowe 15 zł. Przyjmując współczynnik ufności równy 0,90, zbudować przedział ufności dla odchylenia standardowego w zbiorowości paragonów kasowych stoiska kosmetycznego. 1. JAK ROZPOZNAĆ ZADANIE DOTYCZĄCE ESTYMACJI PRZEDZIAŁOWEJ ?Po przeczytaniu całego zadania zwracamy uwagę na zdanie: Przyjmując współczynnik ufności równy 0,90, zbudować przedział ufności dla odchylenia standardowego w zbiorowości paragonów kasowych stoiska kosmetycznego. Występują tu zwroty: zbudować przedział ufności i współczynnik ufności - w związku z tym na pewno jest to zadanie dotyczące estymacji przedziałowej. 2. ANALIZA I PRAWIDŁOWE WYPISANIE DANYCH.Analizujemy zdanie po zdaniu. Na podstawie próby losowej obejmującej 26 paragonów kasowych pewnego stoiska kosmetycznego otrzymano średnią kwotę zakupu wynoszącą 48,80 zł i odchylenie standardowe 15 zł . Od razu zaczyna się opis próby, ponieważ pojawia się informacja na temat wylosowania konkretnej ilości jednostek spośród wszystkich paragonów kasowych. Oznaczamy więc liczebność próby . Dodatkowo podano podstawowe parametry dla próby: średnia kwota zakupu wynosi 48,80 zł, a więc , a odchylenie standardowe 15 zł, czyli . Przyjmując współczynnik ufności równy 0,90, zbudować przedział ufności dla odchylenia standardowego w zbiorowości paragonów kasowych stoiska kosmetycznego. Podano współczynnik ufności . Od razu wyznaczamy . Podsumowując tworzymy przejrzystą tabelę z danymi:
- współczynnik ufności, 3. WYBÓR ODPOWIEDNIEGO WZORU.Szukamy parametru, który należy oszacować przedziałem ufności i w ostatnim zdaniu wyłapujemy słowo: Przyjmując współczynnik ufności równy 0,90, zbudować przedział ufności dla odchylenia standardowego w zbiorowości paragonów kasowych stoiska kosmetycznego. Zwrot odchylenie standardowe oznacza, że będziemy budować przedział ufności oczywiście dla odchylenia standardowego z populacji. Spójrzmy w kartę wzorów. Dla odchylenia standardowego mamy do wyboru dwa modele. Teraz wracamy do danych i sprawdzamy, czy jest znana i jaka jest liczebność próby. nie jest znana , a liczebność próby jest mniejsza od 30 , zatem wybieramy model I . W danych występuje , także interesuje nas pierwsza wersja wzoru z wybranego modelu.
4. UZUPEŁNIANIE WYBRANEGO WZORU I OBLICZENIA.Wracamy do danych z tabeli i uzupełniamy wzór konkretnymi danymi.
Teraz należy odczytać odpowiednią statystykę z tablic. W formule znajduje się literka (grecka litera czyt. chi ), zatem skorzystamy z tablic rozkładu chi-kwadrat (link). W tym przypadku będziemy odczytywać statystykę dwukrotnie, ponieważ w uzupełnionym wzorze występują dwa nieco różniące się symbole: oraz . Zapis oznacza konieczność odnalezienia w tablicach statystyki dla i 25 stopni swobody:
Z kolei zapis oznacza konieczność odnalezienia w tablicach statystyki dla i 25 stopni swobody:
Wracamy do obliczeń i podstawiamy oraz :
5. WYNIK I INTERPRETACJA.Ostatecznie otrzymujemy: Interpretacja brzmi następująco: Z ufnością 0,90 nieznane odchylenie standardowe w zbiorowości paragonów kasowych stoiska kosmetycznego mieści się w przedziale od 12,46 do 20,01 zł. Statystyka ogólna w zadaniach / Woźniak Michał, Wyd. 2, Kraków: Wydawnictwo Akademii Ekonomicznej w Krakowie, ISBN: 978-83-7252-474-4, str. 172 |
||||||